耦合器测试 耦合测试原理

本篇文章给大家谈谈耦合测试原理,以及耦合器测试对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。办理pos机添加微信18127011016

ICP(电感耦合等离子发射光谱仪)的分析测试原理是什么?

耦合器测试 耦合测试原理

通过飞秒检测技术可以发现其原理是;样品由载气(氩)带入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离激发,发射出所含元素的特征谱线。根据特征谱线的存在与否,鉴别样品。

电感耦合等离子体光谱仪是什么原理,在检测时有什么优点?

等离子体(Plasma)一词首先由Langmuir在1929年提出,目前一般指电离度超过0.1%被电离了的气体,这种气体不仅含有中性原子和分子,而且含有大量的电子和离子,且电子和正离子的浓度处于平衡状态,从整体来看是处于中性的。从广义上讲像火焰和电弧的高温部分、火花放电、太阳和恒星表面的电离层等都是等离子体。

等离子体可以按温度分为高温等离子体和低温等离子体两大类。当温度高达106-108K时,所有气体的原子和分子完全离解和电离,称为高温等离子体;当温度低于105K时,气体部分电离,称为低温等离子体。

在实际应用中又把低温等离子体分为热等离子体和冷等离子体。当气体压力在1.013X105帕(相当1大气压)左右,粒子密度较大,电子浓度高,平均自由程小,电子和重粒子之间碰撞频繁,电子从电场获得动能很快传递给重粒子,这样各种粒子(电子、正离子、原子、分子)的热运动能趋于相近,整个气体接进或达到热力学平衡状态,此时气体温度和电子温度基本相等,温度约为数千度到数万度,这种等离子体称为热等离子体。例如直流等离子体喷焰(DCP)和电感耦合等离子体炬(ICP)等都是热等离子体,如果放电气体压力较底,电子浓度较小,则电子和重粒子碰撞机会就少,电子从电场获得的动能不易与重粒子产生交换,它们之间动能相差较大电子平均动能可达几十电子伏,而气体温度较低,这样的等离子体处于非热力学平衡体系,叫做冷等离子体,例如格里姆辉光放电、空心阴极灯放电等。

在光谱分析中所谓的等离子体光源,通常指外观上类似火焰的一类放电光源。目前最常用的有三类:即电感耦合等离子体炬(ICP)、直流等离子体喷焰(DCP)和微波感生等离子体炬(MIP)。对于MIP来说,虽然允许微量进样,耗气量小,功率低、易测定非金属,但对多数金属检测限差、元素间干扰严重、需要氦气,因此主要用于色谱分析的检测器。

ICP和DCP这两类等离子体光源具有较好的分析性能,均已应用于原子发射光谱仪。

电感耦合等离子体原子发射光谱(ICP-AES)技术的先驱是Greenfiald和Fasel,他们在1964年分别发表了各自的研究成果。七十年代后该技术取得了真正的进展,1974年美国的Leeman公司研制出了第一台商用电感耦合等离子体原子发射光谱仪。

ICP光源主要优点是:

1) 检出限低:许多元素可达到1ug/L的检出限

2) 测量的动态范围宽:5-6个数量级

3) 准确度好

4) 基体效应小:ICP是一种具有6000-7000K的高温激发光源,样品又经过化学处理,分析用的标准系列很易于配制成与样品溶液在酸度、基体成分、总盐度等各种性质十分相似的溶液。同时,光源能量密度高,特殊的激发环境——通道效应和激发机理,使ICP光源具有基体效应小的突出优点。

5) 精密度高:RSD~0.5%

6) 曝光时间短:一般只需10-30秒

7) 原子发射光谱分析所具有的多元素同时分析的特点与其他分析方法逐个元素单独测定相比,无论从效率的经济,技术等方面都具有很大的特点。这也是ICP原子发射光谱分析取得很大进展的原因之一。

耦合器的原理

耦合器

耦合器也叫适配器

光电耦合器原理及应用

光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。它由发光源和受光器两部分组成。把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。光电耦合器的种类较多,常见有光电二极管型、光电三极管型、光敏电阻型、光控晶闸管型、光电达林顿型、集成电路型等。如下图1(外形有金属圆壳封装,塑封双列直插等)。

工作原理

在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。

基本工作特性(以光敏三极管为例)

1、共模抑制比很高

在光电耦合器内部,由于发光管和受光器之间的耦合电容很小(2pF以内)所以共模输入电压通过极间耦合电容对输出电流的影响很小,因而共模抑制比很高。

2、输出特性

光电耦合器的输出特性是指在一定的发光电流IF下,光敏管所加偏置电压VCE与输出电流IC之间的关系,当IF=0时,发光二极管不发光,此时的光敏晶体管集电极输出电流称为暗电流,一般很小。当IF0时,在一定的IF作用下,所对应的IC基本上与VCE无关。IC与IF之间的变化成线性关系,用半导体管特性图示仪测出的光电耦合器的输出特性与普通晶体三极管输出特性相似。

3、光电耦合器可作为线性耦合器使用。

在发光二极管上提供一个偏置电流,再把信号电压通过电阻耦合到发光二极管上,这样光电晶体管接收到的是在偏置电流上增、减变化的光信号,其输出电流将随输入的信号电压作线性变化。光电耦合器也可工作于开关状态,传输脉冲信号。在传输脉冲信号时,输入信号和输出信号之间存在一定的延迟时间,不同结构的光电耦合器输入、输出延迟时间相差很大。

光电耦合器的测试

1、用万用表判断好坏,如图3,断开输入端电源,用R×1k档测1、2脚电阻,正向电阻为几百欧,反向电阻几十千欧,3、4脚间电阻应为无限大。1、2脚与3、4脚间任意一组,阻值为无限大,输入端接通电源后,3、4脚的电阻很小。调节RP,3、4间脚电阻发生变化,说明该器件是好的。注:不能用R×10k档,否则导致发射管击穿。

2、简易测试电路,当接通电源后,LED不发光,按下SB,LED会发光,调节RP、LED的发光强度会发生变化,说明被测光电耦合器是好的。

光电耦合器具体应用

1.组成开关电路

当输入信号ui为低电平时,晶体管V1处于截止状态,光电耦合器B1中发光二极管的电流近似为零,输出端Q11、Q12间的电阻很大,相当于开关“断开”;当ui为高电平时,v1导通,B1中发光二极管发光,Q11、Q12间的电阻变小,相当于开关“接通”.该电路因Ui为低电平时,开关不通,故为高电平导通状态.同理,因无信号(Ui为低电平)时,开关导通,故为低电平导通状态.

2.组成逻辑电路

电路为“与门”逻辑电路。其逻辑表达式为P=A.B.图中两只光敏管串联,只有当输入逻辑电平A=1、B=1时,输出P=1.同理,还可以组成“或门”、“与非门”、“或非门”等逻辑电路.

3.组成隔离耦合电路

电路如图4所示.这是一个典型的交流耦合放大电路.适当选取发光回路限流电阻Rl,使B4的电流传输比为一常数,即可保证该电路的线性放大作用。

4.组成高压稳压电路

驱动管需采用耐压较高的晶体管(图中驱动管为3DG27)。当输出电压增大时,V55

的偏压增加,B5中发光二极管的正向电流增大,使光敏管极间电压减小,调整管be结偏压降低而内阻增大,使输出电压降低,而保持输出电压的稳定.

5.组成门厅照明灯自动控制电路

A是四组模拟电子开关(S1~S4):S1,S2,S3并联(可增加驱动功率及抗干扰能力)用于延时电路,当其接通电源后经R4,B6驱动双向可控硅VT,VT直接控制门厅照明灯H;S4与外接光敏电阻Rl等构成环境光线检测电路。当门关闭时,安装在门框上的常闭型干簧管KD受到门上磁铁作用,其触点断开,S1,S2,S3处于数据开状态。晚间主人回家打开门,磁铁远离KD,KD触点闭合。此时9V电源整流后经R1向C1充电,C1两端电压很快上升到9V,整流电压经S1,S2,S3和R4使B6内发光管发光从而触发双向可控硅导通,VT亦导通,H点亮,实现自动照明控制作用。房门关闭后,磁铁控制KD,触点断开,9V电源停止对C1充电,电路进入延时状态。C1开始对R3放电,经一段时间延迟后,C1两端电压逐渐下降到S1,S2,S3的开启电压(1.5v)以下,S1,S2,S3恢复断开状态,导致B6截止,VT亦截止,H熄来,实现延时关灯功能。

没那么多图 没办法 唉

棱镜耦合仪测试原理

棱镜耦合仪测试原理是待测样品通过一个空气作用的耦合探头与棱镜基座接触,在薄膜与棱镜之间产生一个空气狭缝。根据查询相关资料显示:棱镜耦合测试仪采用棱镜耦合方法测试样品折射率,可测试波长633nm、935nm、1549nm处的折射率值,通过软件做曲线耦合科求出任何波段的模拟值。

关于耦合测试原理和耦合器测试的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。办理pos机添加微信18127011016

本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。