pos机贝叶斯模型 pos机贝叶斯模型是什么

最佳答案:

贝叶斯模型的推理方法主要有:启发法策略论,自然抽样空间假说,频率效应论,抽样加工理论。

贝叶斯推理是由英国牧师贝叶斯发现的一种归纳推理方法,后来的许多研究者对贝叶斯方法在观点、方法和理论上不断的进行完善,最终形成了一种有影响的统计学派,打破了经典统计学一统天下的局面。贝叶斯推理是在经典的统计归纳推理--估计和假设检验的基础上发展起来的一种新的推理方法。

与经典的统计归纳推理方法相比,贝叶斯推理在得出结论时不仅要根据当前所观察到的样本信息,而且还要根据推理者过去有关的经验和知识。作为一种推理方法,贝叶斯推理是从概率论中的贝叶斯定理扩充而来。

研究概况:

Kahneman和Tversky开辟了概率推理这一重要的研究领域。他们在20世纪70年代初期的研究发现,人们的直觉概率推理并不遵循贝叶斯原理,表现在判断中往往忽略问题中的基础概率信息,而主要根据击中率信息作出判断。

他们一个经典性的研究是:告知被试100人中有70人是律师,30人是工程师,从中随机选出一人,当把该人的个性特征描述得象工程师时,被试判断该人为工程师的概率接近0.90。显然被试忽略了工程师的基础概率只有30%。

后来他们还采用多种问题验证基础概率忽略现象,如让被试解决如下出租车问题:一个城市85%的出租车属于绿车公司,15%属于蓝车公司,现有一出租车卷入肇事逃逸事件,根据一目击者确认,肇事车属于蓝车公司,目击者的可靠性为80%。问肇事车是蓝车的概率是多少。结果大多数被试判断为80%,但如果考虑基础概率则应是41%。

扩展资料:

1、根据问题和数据,确定网络中的变量和因果关系。

2、在纸上或计算机上绘制贝叶斯网络的结构图。

3、使用节点来表示每个变量,使用箭头来表示变量之间的因果关系。

4、使用贝叶斯定理和已知的数据来计算每个节点的后验概率,即给定其他节点取值的条件下,该节点的概率分布。

5、在向前风险预测图中添加置信区间、风险等级等信息,以方便决策。

其它答案:

贝叶斯模型是利用先贝叶斯定理进行计算的一种机器学习模型,并且此处涉及先验概率和后验概率。比如我们都知道去赌场会十赌九输,此是以前的经验,即为先验概率,也或者大家都知道抛硬币时上下面第一次都是1/2概率,这均为先验概率;如果发现一个人准备跳楼,那么此时他是因为赌博导致的概率是多少?此为后验概率。有了先验概率和后验证概率理解,结合贝叶斯定量即可计算出概率信息值。

接着,朴素贝叶斯是基于贝叶斯定量,并且加上条件(特征之间独立)的一种模型。此处特征属性之间独立是指比如:有100个数据,第1行数据与第2行,第3行等其它任意行数据之间并没有关系,此前提条件非常重要,但现实中较难成立,但这并没有妨碍其的广泛使用,可能原因在于朴素贝叶斯模型通于分类问题处理,其内部算法上会关注于条件概率排序并非具体概率数字,因而其具有一定容错能力,并且特征属性之间假如有着关系并不完全独立,其内部可能存在相关抵消现象。整体上看,朴素贝叶斯模型原理较为简单,且应用较为广泛,比如输入法时可能会进行纠错功能处理,也或者垃圾邮件的识别等。pos机贝叶斯模型 pos机贝叶斯模型是什么

朴素贝叶斯模型的原理较为简单,其利用贝叶斯概率公式,分别如下:

接着假定各特征属性独立,并且将公式进行展示成如下:

如果特征即自变量X全部均为连续定量数据,那么选择高斯分布即可(此为默认值);如果说特征即自变量X中全部均是定类数据且每个X的类别数量大于2,此时可选择多项式分布。如果每个特征全部都是0和1共两个数字,此时选择伯努利分布。如果特征中即包括连续定量数据,又包括定类数据,建议可对定类数据进行哑变量设置后,选择高斯分布

训练集比例默认选择为:0.8即80%(150*0.8=120个样本)进行训练朴素贝叶斯模型,余下20%即30个样本(测试数据)用于模型的验证。此处不进行处理也可以,尤其是自变量X中有定类数据是,建议默认不进行处理。

接着对参数设置如下:

贝叶斯预测的贝叶斯预测模型的概述

贝叶斯预测模型是运用贝叶斯统计进行的一种预测.贝叶斯统计不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。

托马斯·贝叶斯(Thomas Bayes)的统计预测方法是一种以动态模型为研究对象的时间序列预测方法。在做统计推断时,一般模式是:

先验信息+总体分布信息+样本信息→后验分布信息

可以看出贝叶斯模型不仅利用了前期的数据信息,还加入了决策者的经验和判断等信息,并将客观和主观结合起来,对异常情况的发生具有较多的灵活性。这里以美国1960—2005年的出口额数据为例,探讨贝叶斯统计预测方法的应用。

贝叶斯网络基本原理

贝叶斯网络又称信念网络,是有向无环图的网络拓扑结构和贝叶斯概率方法有机结合的模型表示,描述了各个数据项及其相互间的依赖关系。一个 BN包括了一个拓扑结构模型和与之相关的一组条件概率参数。结构模型是一个有向无环图,每个节点则表示一个随机变量,是对于状态、过程、事件等实体的某个特性的形象描述,其中的有向边则表示随机变

量之间的条件依赖关系。BN中每个节点(除根节点外)都有一个给定其父节点情况下的条件概率分布。2. 1. 1贝叶斯网络定理

BN是一种概率网络,即基于概率推理的图形化网络,这个概率网络的基础是贝叶斯公式。我们先来看一看贝叶斯基本公式。

定义 2. 1条件概率:设 X、Y是两个事件,且 P( X)>0,称

为在事件 X发生的条件下事件 Y发生的条件概率。

定义 2. 2联合概率:设 X,Y是两个事件,且 P( X)>0,它们的联合概率为:

定义2.3全概率公式:设试验E的样本空间为S,X为E的事件,Y1,Y2,…,Yn为E的一组事件,满足:

定义2.4贝叶斯公式:根据定义2.1、定义2.2和定义2.3,很容易推得众所周知的贝叶斯公式:

2. 1. 2贝叶斯网络的拓扑结构

BN是一个具有概率分布的有向无环图( Directed Acyclic Graph),其中每个节点代表一个数据变量或者属性,节点间的弧段代表数据变量(属性)之间的概率依赖关系。一条弧段由一个数据变量(属性) X指向另外一个数据变量(属性) Y,说明数据变量 X的取值可以对数据变量 Y的取值产生影响。既然是有向无环图,因此 X,Y间不构成有向回路。在 BN当中,连接两个节点的一条弧 XY中的弧头节点(直接的原因节点) X叫做弧尾节点(结果节点) Y的双亲节点( Parents),Y叫做 X的孩子节点( Children)。如果从节点 A有一条有向通路指向 B,则称节点 A为节点 B的祖先( Ancestor),同时称节点 B为节点 A的后代( Descendent)。

BN能够利用简单明了的图形表达方式定性地表示事件间复杂的概率关系和因果关系,在给定某些先验信息后,还可以定量地表示这些因果概率关系。BN的拓扑结构通常是根据具体的问题和研究对象来确定的。目前如何通过结构学习自动确定和优化网络的拓扑结构是 BN的一个研究热点。

2.1.3条件独立性假设

条件独立性假设是BN进行定量推理的理论基础,可以减少先验概率的数目,从而大大地简化推理和计算过程。

BN的条件独立性假设的一个很重要的判据就是著名的分隔定理(D-Separation):

定义2.5阻塞:G=(V(G),E(G))为一个有向非循环图,s是其中的一条链。当s包含3个连续的节点x,y,z,满足以下3种情况之一,我们称s被节点集合W(WV(G))阻塞:

(1)z∈W,s上存在弧x→z和z→y;

(2)z∈W,s上存在弧x←z和z→y;

(3)s上存在弧x→z和z←y,σ(z)∩W=,σ(z)表示z以及z的所有子孙节点的集合。

图2.1阻塞的3种情形

定义2.6阻塞集:两个节点x和y间的所有路径都被节点集合Z所阻塞,则称集合Z为x,y两个节点间的阻塞集。

定义2.7D-Separation:令X,Y和Z是一个有向无环图G中3个不相交节点的子集,如果在集合X和Y中所有节点间的所有路径都被集合Z所阻塞,则称集合X,Y被Z集合(d-separation),表示为<X,Y|Z>G,也称Z为X和Y的切割集。否则,称在给定集合Z下集合X和Y的图形依赖。

这个判据指出,如果Z隔离了X和Y时,那么可以认为X与Y是关于Z条件独立的,即:P(X|Y,Z)=P(X|Y)。

本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。